Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Food Funct ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630029

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the main reason for chronic liver diseases and malignancies. Currently, there is a lack of approved drugs for the prevention or treatment of NAFLD. Vine tea (Ampelopsis grossedentata) has been used as a traditional Chinese beverage for centuries. Vine tea carries out several biological activities including the regulation of plasma lipids and blood glucose, hepato-protective function, and anti-tumor activity and contains the highest content of flavonoids. However, the underlying mechanisms of total flavonoids from vine tea (TF) in the attenuation of NAFLD remain unclear. Therefore, we investigated the interventions and mechanisms of TF in mice with NAFLD using an integrated analysis of network pharmacology, lipidomics, and transcriptomics. Staining and biochemical tests revealed a significant increase in AKT-overexpression-induced (abbreviated as AKT-induced) NAFLD in mice. Lipid accumulation in hepatic intracellular vacuoles was alleviated after TF treatment. In addition, TF reduced the hepatic and serum triglyceride levels in mice with AKT-induced NAFLD. Lipidomics results showed 32 differential lipids in the liver, mainly including triglycerides (TG), diglycerides (DG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Transcriptomic analysis revealed that 314 differentially expressed genes were commonly upregulated in the AKT group and downregulated in the TF group. The differential regulation of lipids by the genes Pparg, Scd1, Chpt1, Dgkz, and Pla2g12b was further revealed by network enrichment analysis and confirmed by RT-qPCR. Furthermore, we used immunohistochemistry (IHC) to detect changes in the protein levels of the key proteins PPARγ and SCD1. In summary, TF can improve hepatic steatosis by targeting the PPAR signaling pathway, thereby reducing de novo fatty acid synthesis and modulating the glycerophospholipid metabolism.

2.
Proc Natl Acad Sci U S A ; 121(8): e2314128121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38359291

RESUMO

Aberrant lysine lactylation (Kla) is associated with various diseases which are caused by excessive glycolysis metabolism. However, the regulatory molecules and downstream protein targets of Kla remain largely unclear. Here, we observed a global Kla abundance profile in colorectal cancer (CRC) that negatively correlates with prognosis. Among lactylated proteins detected in CRC, lactylation of eEF1A2K408 resulted in boosted translation elongation and enhanced protein synthesis which contributed to tumorigenesis. By screening eEF1A2 interacting proteins, we identified that KAT8, a lysine acetyltransferase that acted as a pan-Kla writer, was responsible for installing Kla on many protein substrates involving in diverse biological processes. Deletion of KAT8 inhibited CRC tumor growth, especially in a high-lactic tumor microenvironment. Therefore, the KAT8-eEF1A2 Kla axis is utilized to meet increased translational requirements for oncogenic adaptation. As a lactyltransferase, KAT8 may represent a potential therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , Biossíntese de Proteínas , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Catálise , Microambiente Tumoral , Histona Acetiltransferases
3.
Chin Med J (Engl) ; 137(2): 181-189, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37612257

RESUMO

BACKGROUND: Liver cancer is largely resistant to chemotherapy. This study aimed to identify the effective chemotherapeutics for ß-catenin-activated liver cancer which is caused by gain-of-function mutation of catenin beta 1 ( CTNNB1 ), the most frequently altered proto-oncogene in hepatic neoplasms. METHODS: Constitutive ß-catenin-activated mouse embryonic fibroblasts (MEFs) were established by deleting exon 3 ( ß-catenin Δ(ex3)/+ ), the most common mutation site in CTNNB1 gene. A screening of 12 widely used chemotherapy drugs was conducted for the ones that selectively inhibited ß-catenin Δ(ex3)/+ but not for wild-type MEFs. Untargeted metabolomics was carried out to examine the alterations of metabolites in nucleotide synthesis. The efficacy and selectivity of methotrexate (MTX) on ß-catenin-activated human liver cancer cells were determined in vitro . Immuno-deficient nude mice subcutaneously inoculated with ß-catenin wild-type or mutant liver cancer cells and hepatitis B virus ( HBV ); ß-catenin lox(ex3)/+ mice were used, respectively, to evaluate the efficacy of MTX in the treatment of ß-catenin mutant liver cancer. RESULTS: MTX was identified and validated as a preferential agent against the proliferation and tumor formation of ß-catenin-activated cells. Boosted nucleotide synthesis was the major metabolic aberration in ß-catenin-active cells, and this alteration was also the target of MTX. Moreover, MTX abrogated hepatocarcinogenesis of HBV ; ß-catenin lox(ex3)/+ mice, which stimulated concurrent Ctnnb1- activated mutation and HBV infection in liver cancer. CONCLUSION: MTX is a promising chemotherapeutic agent for ß-catenin hyperactive liver cancer. Since repurposing MTX has the advantages of lower risk, shorter timelines, and less investment in drug discovery and development, a clinical trial is warranted to test its efficacy in the treatment of ß-catenin mutant liver cancer.


Assuntos
Neoplasias Hepáticas , Metotrexato , Camundongos , Animais , Humanos , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Camundongos Nus , beta Catenina/genética , beta Catenina/metabolismo , Fibroblastos/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Vírus da Hepatite B , Nucleotídeos
4.
Cancer Lett ; 579: 216465, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38084702

RESUMO

Lung cancer is a highly heterogeneous malignancy, and despite the rapid development of chemotherapy and radiotherapy, acquired drug resistance and tumor progression still occur. Thus, it is urgent to identify novel therapeutic targets. Our research aims to screen novel biomarkers associated with the prognosis of lung carcinoma patients and explore the potential regulatory mechanisms. We obtained RNA sequencing (RNA-seq) data of lung cancer patients from public databases. Clinical signature analysis, weighted gene coexpression network analysis (WGCNA) and the random forest algorithm showed that C1q/tumor necrosis factor-related protein-6 (CTRP6) is a core gene related to lung cancer prognosis, and it was determined to promote tumor proliferation and metastasis both in vivo and in vitro. Mechanistically, silencing CTRP6 was determined to promote xCT/GPX4-involved ferroptosis through functional assays related to lipid peroxidation, Fe2+ concentration and mitochondrial ultrastructure. By performing interactive proteomics analyses in lung tumor cells, we identified the interaction between CTRP6 and suppressor of cytokine signaling 2 (SOCS2) leading to SOCS2 ubiquitination degradation, subsequently enhancing the downstream xCT/GPX4 signaling pathway. Moreover, significant correlations between CTRP6-mediated SOCS2 and ferroptosis were revealed in mouse models and clinical specimens of lung cancer. As inducing ferroptosis has been gradually regarded as an alternative strategy to treat tumors, targeting CTRP6-mediated ferroptosis could be a potential strategy for lung cancer therapy.


Assuntos
Ferroptose , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adipocinas/metabolismo , Ferroptose/genética , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Prognóstico , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/metabolismo
5.
bioRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37905039

RESUMO

Androgen receptor- (AR-) indifference is a mechanism of resistance to hormonal therapy in prostate cancer (PC). Here we demonstrate that the HOX/CUT transcription factor ONECUT2 (OC2) activates resistance through multiple drivers associated with adenocarcinoma, stem-like and neuroendocrine (NE) variants. Direct OC2 targets include the glucocorticoid receptor and the NE splicing factor SRRM4, among others. OC2 regulates gene expression by promoter binding, enhancement of chromatin accessibility, and formation of novel super-enhancers. OC2 also activates glucuronidation genes that irreversibly disable androgen, thereby evoking phenotypic heterogeneity indirectly by hormone depletion. Pharmacologic inhibition of OC2 suppresses lineage plasticity reprogramming induced by the AR signaling inhibitor enzalutamide. These results demonstrate that OC2 activation promotes a range of drug resistance mechanisms associated with treatment-emergent lineage variation in PC. Our findings support enhanced efforts to therapeutically target this protein as a means of suppressing treatment-resistant disease.

6.
Plants (Basel) ; 12(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37447140

RESUMO

Tea, as a global nonalcoholic beverage, is widely consumed due to its economic, health and cultural importance. Polyploids have the ability to solve the problems of low yield, cold resistance and insect resistance in tea tree varieties. However, the response mechanism to aluminum and heavy metal remains unclear. In this study, the content of Al, Cu and Cd were measured in the leaves and roots of 'Qianmei 419' and 'Qianfu 4', respectively. The content of Al, Cd and Cu in the roots of the 'Qianmei 419' tea variety were significantly higher than in 'Qianfu 4' roots. Only the content of Cu in the leaves of the 'Qianmei 419' tea variety was significantly higher than that in the roots of the 'Qianfu 4' tea variety. Moreover, we found that the content of Al, Cu and Cd in the soil around the root of 'Qianfu 4' were higher than in the soil around the root of 'Qianmei 419'. RNA-seq was performed to identify the DEGs involved in the accumulation of Al, Cu and Cd between 'Qianmei 419' and 'Qianfu 4'. A total of 23,813 DEGs were identified in the triploid tea variety, including 16,459 upregulated DEGs and 7354 downregulated DEGs. Among them, by analyzing the expression levels of some metal transporter genes, it was found that most of the metal transporter genes were downregulated in the triploid tea plants. In short, through the analysis of transcriptome data and metal content, it was found that changes in metal transporter gene expression affect the accumulation of metals in tea plants. These results provide candidate genes to enhance multi-metal tolerance through genetic engineering technology.

7.
BMC Plant Biol ; 23(1): 356, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434140

RESUMO

BACKGROUND: Fragaria nilgerrensis (FN) provides a rich source of genetic variations for strawberry germplasm innovation. The color of strawberry fruits is a key factor affecting consumer preferences. However, the genetic basis of the fruit color formation in F. nilgerrensis and its interspecific hybrids has rarely been researched. RESULTS: In this study, the fruit transcriptomes and flavonoid contents of FN (white skin; control) and its interspecific hybrids BF1 and BF2 (pale red skin) were compared. A total of 31 flavonoids were identified. Notably, two pelargonidin derivatives (pelargonidin-3-O-glucoside and pelargonidin-3-O-rutinoside) were revealed as potential key pigments for the coloration of BF1 and BF2 fruits. Additionally, dihydroflavonol 4-reductase (DFR) (LOC101293459 and LOC101293749) and anthocyanidin 3-O-glucosyltransferase (BZ1) (LOC101300000), which are crucial structural genes in the anthocyanidin biosynthetic pathway, had significantly up-regulated expression levels in the two FN interspecific hybrids. Moreover, most of the genes encoding transcription factors (e.g., MYB, WRKY, TCP, bHLH, AP2, and WD40) related to anthocyanin accumulation were differentially expressed. We also identified two DFR genes (LOC101293749 and LOC101293459) that were significantly correlated with members in bHLH, MYB, WD40, AP2, and bZIP families. Two chalcone synthase (CHS) (LOC101298162 and LOC101298456) and a BZ1 gene (LOC101300000) were highly correlated with members in bHLH, WD40 and AP2 families. CONCLUSIONS: Pelargonidin-3-O-glucoside and pelargonidin-3-O-rutinoside may be the key pigments contributing to the formation of pale red fruit skin. DFR and BZ1 structural genes and some bHLH, MYB, WD40, AP2, and bZIP TF family members enhance the accumulation of two pelargonidin derivatives. This study provides important insights into the regulation of anthocyanidin biosynthesis in FN and its interspecific hybrids. The presented data may be relevant for improving strawberry fruit coloration via genetic engineering.


Assuntos
Antocianinas , Fragaria , Fragaria/genética , Transcriptoma , Perfilação da Expressão Gênica , Flavonoides , Glucosídeos
8.
Gene ; 865: 147329, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36870427

RESUMO

In this study, the content of main nutrients in 'QianFu No. 4' were significantly higher than 'QianMei 419.'Transcriptome and proteome were combined to provide new insight of the molecular mechanisms linked to nutritional quality of 'QianFu No. 4' and 'QianMei 419' by leaf function analysis, RNA sequencing and isobaric tags for relative and absolute quantification techniques.A total of 23,813 genes and 361 proteins exhibited differential expression level in 'QianMei 419' when compared with 'QianFu No. 4'. These genes and proteins revealed that the pathway of flavonoids biosynthesis, caffeine metabolism, theanine biosynthesis and amino acid metabolism were linked to nutritional quality of tea. Our results provided transcriptomics and proteomics information with respect to the molecular mechanisms of nutritional changes of tea, identified key genes and proteins that associated with the metabolism and accumulation of nutrients, and helped clarify the molecular mechanisms of nutrient differences.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Transcriptoma , Proteômica/métodos , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Chá/genética , Chá/metabolismo , Valor Nutritivo , Regulação da Expressão Gênica de Plantas
9.
PLoS One ; 18(2): e0275652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36800382

RESUMO

Polyploidization results in significant changes in the morphology and physiology of plants, with increased growth rate and genetic gains as the number of chromosomes increases. In this study, the leaf functional traits, photosynthetic characteristics, leaf cell structure and transcriptome of Camellia sinensis were analyzed. The results showed that triploid tea had a significant growth advantage over diploid tea, the leaf area was 59.81% larger, and the photosynthetic capacity was greater. The morphological structure of triploid leaves was significantly different, the xylem of the veins was more developed, the cell gap between the palisade tissue and the sponge tissue was larger and the stomata of the triploid leaves were also larger. Transcriptome sequencing analysis revealed that in triploid tea, the changes in leaf morphology and physiological characteristics were affected by the expression of certain key regulatory genes. We identified a large number of genes that may play important roles in leaf development, especially genes involved in photosynthesis, cell division, hormone synthesis and stomata development. This research will enhance our understanding of the molecular mechanism underlying tea and stomata development and provide a basis for molecular breeding of high-quality and high-yield tea varieties.


Assuntos
Camellia sinensis , Transcriptoma , Camellia sinensis/metabolismo , Diploide , Triploidia , Chá/metabolismo , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Gene ; 865: 147301, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36813060

RESUMO

Plants U-box genes are crucial for plant survival, and they extensively regulate plant growth, reproduction and development as well as coping with stress and other processes. In this study, we identified 92 CsU-box genes through genome-wide analysis in the tea plant (Camellia sinensis), all of them contained the conserved U-box domain and were divided into 5 groups, which supported by the further genes structure analysis. The expression profiles in eight tea plant tissues and under abiotic and hormone stresses were analyzed using the TPIA database. 7 CsU-box genes (CsU-box27/28/39/46/63/70/91) were selected to verify and analyze expression patterns under PEG-induced drought and heat stress in tea plant respectively, the qRT-PCR results showed consistent with transcriptome datasets; and the CsU-box39 were further heterologous expressed in tobacco to perform gene function analysis. Phenotypic analyses of overexpression transgenic tobacco seedlings and physiological experiments revealed that CsU-box39 positively regulated the plant response to drought stress. These results lay a solid foundation for studying the biological function of CsU-box, and will provide breeding strategy basis for tea plant breeders.


Assuntos
Camellia sinensis , /genética , Camellia sinensis/metabolismo , Melhoramento Vegetal , Estresse Fisiológico/genética , Chá/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Filogenia
11.
Phytomedicine ; 109: 154575, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610163

RESUMO

BACKGROUND: High levels of glycolysis supply large quantities of energy and biological macromolecular raw materials for cell proliferation. Triptolide (TP) is a kind of epoxy diterpene lactone extracted from the roots, flowers, leaves, or grains of the Celastraceae plant, Tripterygium wilfordii. TP has multiple biological activities, including anti-inflammatory, immunologic suppression, and anti-cancer effects. Nevertheless, it is little known regarding its anti-intrahepatic cholangiocarcinoma (ICC) growth, and the mechanism still require exploration. PURPOSE: This research explored the effect of TP on ICC growth and investigated whether TP inhibits glycolysis via the AKT/mTOR pathway. METHODS: Cell proliferation was analyzed by Cell Counting Kit-8 (CCK-8), clonogenic assay, and flow cytometry. The underlying molecular mechanism was identified by determining glucose consumption, ATP production, lactate production, hexokinase (HK) and pyruvate kinase (PK) activity, and Western blot analysis. A rapid ICC model of AKT/YapS127A oncogene coactivation in mice was used to clarify the effect of TP treatment on tumor growth and glycolysis. RESULTS: The results showed that TP treatment significantly inhibited ICC cell proliferation and glycolysis in a dose- and time-dependent manner(P < 0.05). Further analysis suggested that TP suppressed ICC cell glycolysis by targeting AKT/mTOR signaling. Additionally, we found that TP inhibits tumor growth and glycolysis in AKT/YapS127A mice(P < 0.05). CONCLUSION: Taken together, we revealed that TP suppressed ICC growth by suppressing glycolysis via the AKT/mTOR pathway and may provide a potential therapeutic target for ICC treatment.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Diterpenos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Colangiocarcinoma/metabolismo , Proliferação de Células , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Glicólise , Linhagem Celular Tumoral
12.
J Transl Med ; 21(1): 50, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703130

RESUMO

BACKGROUND: Although ß-catenin signaling cascade is frequently altered in human cancers, targeting this pathway has not been approved for cancer treatment. METHODS: High-throughput screening of an FDA-approved drug library was conducted to identify therapeutics that selectively inhibited the cells with activated ß-catenin. Efficacy of iron chelator and mitochondrial inhibitor was evaluated for suppression of cell proliferation and tumorigenesis. Cellular chelatable iron levels were measured to gain insight into the potential vulnerability of ß-catenin-activated cells to iron deprivation. Extracellular flux analysis of mitochondrial function was conducted to evaluate the downstream events of iron deprivation. Chromatin immunoprecipitation, real-time quantitative PCR and immunoblotting were performed to identify ß-catenin targets. Depletion of iron-regulatory protein 2 (IRP2), a key regulator of cellular iron homeostasis, was carried out to elucidate its significance in ß-catenin-activated cells. Online databases were analyzed for correlation between ß-catenin activity and IRP2-TfR1 axis in human cancers. RESULTS: Iron chelators were identified as selective inhibitors against ß-catenin-activated cells. Deferoxamine mesylate, an iron chelator, preferentially repressed ß-catenin-activated cell proliferation and tumor formation in mice. Mechanically, ß-catenin stimulated the transcription of IRP2 to increase labile iron level. Depletion of IRP2-sequered iron impaired ß-catenin-invigorated mitochondrial function. Moreover, mitochondrial inhibitor S-Gboxin selectively reduced ß-catenin-associated cell viability and tumor formation. CONCLUSIONS: ß-catenin/IRP2/iron stimulation of mitochondrial energetics is targetable vulnerability of ß-catenin-potentiated cancer.


Assuntos
Proteína 2 Reguladora do Ferro , Neoplasias , Camundongos , Humanos , Animais , Proteína 2 Reguladora do Ferro/metabolismo , beta Catenina/metabolismo , Ferro/metabolismo , Neoplasias/tratamento farmacológico , Quelantes de Ferro/farmacologia , Mitocôndrias/metabolismo
13.
Animal Model Exp Med ; 6(2): 92-102, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35974691

RESUMO

BACKGROUND: The expression of pyruvate kinase muscle 2 (PKM2) is augmented in macrophages of patients with atherosclerotic coronary artery disease. The role of PKM2 in atherosclerosis is to be determined. METHODS: Global and myeloid cell-specific PKM2 knock-in mice with ApoE-/- background (ApoE-/- , PKM2KI/KI and Lyz2-cre, ApoE-/- , and PKM2flox/flox ) were produced to evaluate the clinical significance of PKM2 in atherosclerosis development. Wild-type and PKM2 knock-in macrophages were isolated to assess the function of PKM2 in macrophage phagocytosis. Atherosclerotic mice were treated with PKM2 inhibitor shikonin (SKN) to evaluate the therapeutic potential of PKM2 suppression in atherosclerosis. RESULTS: Oxidized low-density lipoprotein (oxLDL) upregulated PKM2 in macrophages. PKM2 in return promoted the uptake of oxLDL by macrophages. Overexpressed PKM2 accelerated atherosclerosis in mice. SKN blocked the progress of mouse atherosclerosis. CONCLUSIONS: PKM2 accelerates macrophage phagocytosis and atherosclerosis. Targeting PKM2 is a potential therapy for atherosclerosis.


Assuntos
Aterosclerose , Piruvato Quinase , Animais , Camundongos , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Macrófagos/metabolismo , Músculos/metabolismo , Fagocitose , Piruvato Quinase/genética , Piruvato Quinase/metabolismo
14.
Nanomaterials (Basel) ; 12(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558316

RESUMO

Nitrogen dioxide is one origin of air pollution from fossil fuels with the potential to cause great harm to human health in low concentrations. Therefore, low-cost, low-power-consumption sensors for low-concentration NO2 detection are essential. Herein, heterojunction by SnO2 quantum wires, a traditional metal oxide NO2 sensing material, and Ti3C2Tx MXene, a novel type of 2D layered material, was synthesized using a simple solvothermal method for enhancing gas-sensing performance and reducing operating temperature. The operating temperature was reduced to 80 °C, with a best performance of 27.8 and a fast response and recovery time (11 s and 23 s, respectively). The SnO2 and Ti3C2Tx MXene composite exhibits high speed and low detection limit due to the construction of the heterojunction with high conductive Ti3C2Tx MXene. The selectivity and stability of gas sensors are carried out. This could enable the realization of fast response, high-sensitivity, and selective NO2 sensing under low operating temperatures.

15.
Front Pharmacol ; 13: 1009767, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506561

RESUMO

Hepatocellular carcinoma (HCC), the most common kind of liver cancer, accounts for the majority of liver cancer diagnoses and fatalities. Clinical aggressiveness, resistance to traditional therapy, and a high mortality rate are all features of this disease. Our previous studies have shown that co-activation of AKT and c-Met induces HCC development, which is the malignant biological feature of human HCC. Cucurbitacin B (CuB), a naturally occurring tetracyclic triterpenoid compound with potential antitumor activity. However, the metabolic mechanism of AKT/c-Met-induced Hepatocellular Carcinogenesis and CuB in HCC remains unclear. In this study, we established an HCC mouse model by hydrodynamically transfecting active AKT and c-Met proto-oncogenes. Based on the results of hematoxylin-eosin (H&E), oil red O (ORO) staining, and immunohistochemistry (IHC), HCC progression was divided into two stages: the early stage of HCC (3 weeks after AKT/c-Met injection) and the formative stage of HCC (6 weeks after AKT/c-Met injection), and the therapeutic effect of CuB was evaluated. Through UPLC-Q-TOF-MS/MS metabolomics, a total of 26 distinct metabolites were found in the early stage of HCC for serum samples, while in the formative stage of HCC, 36 distinct metabolites were found in serum samples, and 13 different metabolites were detected in liver samples. 33 metabolites in serum samples and 11 in live samples were affected by CuB administration. Additionally, metabolic pathways and western blotting analysis revealed that CuB influences lipid metabolism, amino acid metabolism, and glucose metabolism by altering the AKT/mTORC1 signaling pathway, hence decreasing tumor progression. This study provides a metabolic basis for the early diagnosis, therapy, and prognosis of HCC and the clinical application of CuB in HCC.

16.
Front Plant Sci ; 13: 1004387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212364

RESUMO

The tea plant (Camellia sinensis) is an important economic crop, which is becoming increasingly popular worldwide, and is now planted in more than 50 countries. Tea green leafhopper is one of the major pests in tea plantations, which can significantly reduce the yield and quality of tea during the growth of plant. In this study, we report a genome assembly for DuyunMaojian tea plants using a combination of Oxford Nanopore Technology PromethION™ with high-throughput chromosome conformation capture technology and used multi-omics to study how the tea plant responds to infestation with tea green leafhoppers. The final genome was 3.08 Gb. A total of 2.97 Gb of the genome was mapped to 15 pseudo-chromosomes, and 2.79 Gb of them could confirm the order and direction. The contig N50, scaffold N50 and GC content were 723.7 kb, 207.72 Mb and 38.54%, respectively. There were 2.67 Gb (86.77%) repetitive sequences, 34,896 protein-coding genes, 104 miRNAs, 261 rRNA, 669 tRNA, and 6,502 pseudogenes. A comparative genomics analysis showed that DuyunMaojian was the most closely related to Shuchazao and Yunkang 10, followed by DASZ and tea-oil tree. The multi-omics results indicated that phenylpropanoid biosynthesis, α-linolenic acid metabolism, flavonoid biosynthesis and 50 differentially expressed genes, particularly peroxidase, played important roles in response to infestation with tea green leafhoppers (Empoasca vitis Göthe). This study on the tea tree is highly significant for its role in illustrating the evolution of its genome and discovering how the tea plant responds to infestation with tea green leafhoppers will contribute to a theoretical foundation to breed tea plants resistant to insects that will ultimately result in an increase in the yield and quality of tea.

17.
Proc Natl Acad Sci U S A ; 119(39): e2202157119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122209

RESUMO

CTNNB1, encoding ß-catenin protein, is the most frequently altered proto-oncogene in hepatic neoplasms. In this study, we studied the significance and pathological mechanism of CTNNB1 gain-of-function mutations in hepatocarcinogenesis. Activated ß-catenin not only triggered hepatic tumorigenesis but also exacerbated Tp53 deletion or hepatitis B virus infection-mediated liver cancer development in mouse models. Using untargeted metabolomic profiling, we identified boosted de novo pyrimidine synthesis as the major metabolic aberration in ß-catenin mutant cell lines and livers. Oncogenic ß-catenin transcriptionally stimulated AKT2, which then phosphorylated the rate-limiting de novo pyrimidine synthesis enzyme CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotase) on S1406 and S1859 to potentiate nucleotide synthesis. Moreover, inhibition of ß-catenin/AKT2-stimulated pyrimidine synthesis axis preferentially repressed ß-catenin mutant cell proliferation and tumor formation. Therefore, ß-catenin active mutations are oncogenic in various preclinical liver cancer models. Stimulation of ß-catenin/AKT2/CAD signaling cascade on pyrimidine synthesis is an essential and druggable vulnerability for ß-catenin mutant liver cancer.


Assuntos
Neoplasias Hepáticas , Pirimidinas , beta Catenina , Animais , Ácido Aspártico , Carcinogênese , Di-Hidro-Orotase/genética , Di-Hidro-Orotase/metabolismo , Sistemas de Liberação de Medicamentos , Ligases , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatologia , Camundongos , Nucleotídeos , Fosfatos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/biossíntese , beta Catenina/metabolismo
18.
Clin Immunol ; 241: 109073, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35817291

RESUMO

Tumor immune microenvironment (TIME) is of critical importance for the development and therapeutic response of hepatocellular carcinoma (HCC). However, limited studies have investigated immune-related indicators for clinical supervision and decision. The current study aimed to develop an improved prognostic signature based on TIME. HCC patients from TCGA and ICGC database were classified into three subtypes (Immunity High, Immunity Medium and Immunity Low) according to ssGSEA scores of 29 immune gene sets. Differentially expressed immune-related genes (DE IRGs) between Immune High and Low groups were screened with an adjusted P < 0.05. Weighted gene co-expression network analysis (WGCNA) was used to establish gene co-expression modules of differentially expressed genes (DEGs) between tumor and normal tissues. 45 survival-related immune genes (SRIGs) were identified at points of intersection between hub genes and DE IRGs. By performing Cox regression and LASSO analysis, 3 of the 45 SRIGs were screened to establish a prognostic model. Patients with high risk scores exhibited worse survival outcome and poorer response to chemotherapy. Potential mechanisms of chemotherapy resistance also have been discussed. More significantly, high -risk patients showed increased immune cell infiltration and checkpoints, which suggested a benefit of immunotherapy. In addition, knockdown of IGF2BP3 was determined to significantly inhibit cell proliferation and migration in HCC. Our immune-related model may be an effective tool for precise diagnosis and treatment of HCC. It may help to select patients suitable for chemotherapy, and immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Microambiente Tumoral/genética
19.
Genes (Basel) ; 13(7)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35886068

RESUMO

Fragaria nilgerrensis Schlecht. is a wild diploid strawberry species. The intense peach-like aroma of its fruits makes F. nilgerrensis an excellent resource for strawberry breeding programs aimed at enhancing flavors. However, the formation of the peach-like aroma of strawberry fruits has not been comprehensively characterized. In this study, fruit metabolome and transcriptome datasets for F. nilgerrensis (HA; peach-like aroma) and its interspecific hybrids PA (peach-like aroma) and NA (no peach-like aroma; control) were compared. In total, 150 differentially accumulated metabolites were detected. The K-means analysis revealed that esters/lactones, including acetic acid, octyl ester, δ-octalactone, and δ-decalactone, were more abundant in HA and PA than in NA. These metabolites may be important for the formation of the peach-like aroma of F. nilgerrensis fruits. The significantly enriched gene ontology terms assigned to the differentially expressed genes (DEGs) were fatty acid metabolic process and fatty acid biosynthetic process. Twenty-seven DEGs were predicted to be associated with ester and lactone biosynthesis, including AAT, LOX, AOS, FAD, AIM1, EH, FAH, ADH, and cytochrome P450 subfamily genes. Thirty-five transcription factor genes were predicted to be associated with aroma formation, including bHLH, MYB, bZIP, NAC, AP2, GATA, and TCPfamily members. Moreover, we identified differentially expressed FAD, AOS, and cytochrome P450 family genes and NAC, MYB, and AP2 transcription factor genes that were correlated with δ-octalactone and δ-decalactone. These findings provide key insights into the formation of the peach-like aroma of F. nilgerrensis fruits, with implications for the increased use of wild strawberry resources.


Assuntos
Fragaria , Sistema Enzimático do Citocromo P-450/genética , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Odorantes/análise , Melhoramento Vegetal , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
20.
Genomics ; 114(4): 110394, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35659563

RESUMO

The magnoliid Litsea coreana has been the subject of a substantial amount of research owing to its production of many flavonoid metabolites, high food processing value, and a controversial phylogenetic position. For this study, we assembled a high-grade genome at the chromosome scale and annotation of L. coreana that was anchored to 12 chromosomes. The total genome was 1139.45 Mb, while the N50 scaffold was 97.18 Mb long. The analysis of phylogenetic trees constructed by different methods show that the phylogeny of Magnoliids is inconsistent, indicating that the differentiation process of monocots, eudicots, and Magnoliids still remains in dispute. An ancient whole-genome duplication (WGD) event was shown to have occurred before the Magnoliales and Laurels had differentiated. Subsequently, an independent WGD appeared in the Lauralean lineage. A total of 27 types of flavonoids were detected in all five tissues of L. coreana. Chalcone synthases (CHSs) that are responsible for production of flavonoids have been validated at the bioinformatics level. The retention of comparative genomic analyses of the CHS gene family showed that this family had contracted significantly in L. coreana. Our research further elaborated the evolution of Lauraceae and perfected the genetic basis of flavonoid biosynthesis in L. coreana. SIGNIFICANCE STATEMENT: Provides evidence that determines the evolutionary status of Magnoliids. The chalcone synthase gene family was significantly contracted in Litsea coreana.


Assuntos
Litsea , Magnoliopsida , Cromossomos , Flavonoides , Litsea/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...